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1. Introduction

Flux compactifications constitute a promising direction to look for string vacua with sta-

bilised moduli [1, 2]. However, most of the supersymmetric solutions found so far feature
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a vacuum with negative cosmological constant, while Minkowski vacua with all the moduli

stabilised in a perturbative regime have remained elusive 1.

On the other hand, in the last years it became clear that the original Calabi–Yau com-

pactifications (even with fluxes turned on) represent only a fraction of all the possibilities

which lead to supersymmetric theories in lower dimensions. In particular, in Refs. [3, 4] it

was shown that supersymmetric ground states in four dimensions are related to internal

manifolds with SU(3) × SU(3) structure which are called twisted generalised Calabi–Yau

manifolds.

Another important idea that allows to extend the class of manifolds suitable for com-

pactification is that of duality. For example, it is well established that type IIA/IIB string

theories are related by T-duality/mirror symmetry, in the absence of fluxes. By insisting

that this remains true when fluxes are turned on, we should be able to find new configu-

rations that are the geometric dual of fluxes. In particular, it is expected that the NS-NS

fluxes play a major role, as it is well known that T-duality mixes the metric with the B-

field: this was indeed confirmed in Refs. [7 – 9] where it was shown that the mirror/T –dual

of the electric NS-NS fluxes are manifolds with torsion. These were half-flat manifolds,

of which twisted-tori are a subclass. Compactifications on these type of manifolds was

consequently studied in [9]-[28] It was realised that these type of manifolds induced super-

potentials that had vacua where all the moduli were stabilised, all be it in an anti-deSitter

vacuum.

The question of what type of manifolds are needed to recover the mirror in the presence

of magnetic NS fluxes however remained a little more obscured. It was realised that these

compactifications are not geometric in the usual sense of geometry Such non-geometric

manifolds were studied in [5, 8], [29]–[54] and the mirror to the magnetic NS fluxes were

termed non-geometric fluxes. It was also conjectured in [14] that possible compactifications

that would lead to the mirrors of magnetic NS fluxes are compactifications on manifolds

described by generalised geometry. This was made more precise in [30, 31].

In this paper we study compactifications of type IIA and IIB string theories on (non-

geometric) orientifolds with SU(3) × SU(3) structure with the purpose of finding four-

dimensional supersymmetric Minkowski solutions. We argue that the formalism of gener-

alised geometry allows us to treat non-geometric compactifications in a way very similar

to geometric compactifications. Indeed by generalising the derivative operator to a co-

variant derivative for T-dualities we show that we are able to derive (a subclass of) the

four-dimensional superpotentials of [49, 55] from a compactification. Within this formal-

ism we are able to derive the superpotential for an arbitrary number of moduli. This is a

crucial step toward finding Minkowski vacua. We show that, under mild constraints on the

numbers of moduli, the superpotential we consider exhibits a rich spectrum of Minkowski

vacua with all the moduli stabilised and tadpole conditions satisfied.

The paper outline is as follows. In section 2 we introduce some concepts in generalised

geometry and describe how we deal with the non-geometric nature of the compactifications.

In section 3 we derive the superpotentials and tadpole constraints for compactifications

of type IIA and type IIB string theory on orientifolds with SU(3) × SU(3) structure. In

1For a recent world-sheet approach for models with no Kähler moduli at strong coupling see [5]. Also

see [6] for a non-perturbative possibility.
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section 4 we study the vacuum structure of the superpotential for a number of simple cases

and show that generically the vacuum spectrum can include Minkowski vacua with all the

moduli stabilised at parametrically controlled values.

2. Some generalised geometry

In this section we give a brief overview of the parts of generalised geometry that are

relevant for this work. We use the term ‘generalised geometry’ to denote both generalised

complex geometry and generalised almost complex geometry. Generalised geometry has

been developed by mathematicians [56 – 62] and almost in parallel applied to Physics. By

now there are a number of excellent reviews for physicists [1, 29, 31, 63] which we follow for

some of this section. In the first part of this section we introduce the objects and notations

that we use in this paper. Following this we discuss an extension to the formalism in the

form of a new derivative operator that can be thought of as gauging transformations of

generalised complex structures. This kind of derivative has also been recently proposed

in [31]. We end the section with a discussion of the some of the physics associated with

generalised geometry.

2.1 Generalised complex geometry

Generalised complex geometry is the generalisation of complex geometry to T ⊕ T ∗, the

tangent and cotangent bundles. An element of T ⊕ T ∗ is in general a sum of a vector X

and a one-form ξ. It is useful to write quantities in terms of matrices and vectors where

the rows and columns denote whether the elements are in T or in T ∗. Then a generalised

almost complex structure can be defined as a map J : T ⊕ T ∗ → T ⊕ T ∗ that squares to

−�

2d, where d is the real dimension of the manifold, and satisfies a Hermiticity condition

J TIJ = I where

I =

(

0
�

d
�

d 0

)

. (2.1)

An example of a generalised almost complex structure is one induced by an almost complex

structure I

JI =

(

I 0

0 −IT

)

. (2.2)

Another example is one that is induced by an almost symplectic two-form J

JJ =

(

0 −J−1

J 0

)

. (2.3)

In general, a generalised almost complex structure will be some combination of the two.

Given a generalised almost complex structure it is possible to generate a new one by a

B-transformation defined as

JB =

(

1 0

B 1

)

J
(

1 0

−B 1

)

, (2.4)
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where B is a real two-form, B ∈ Λ2T ∗. Similarly we can also generate a new one through

a β-transform

Jβ =

(

1 β

0 1

)

J
(

1 −β

0 1

)

, (2.5)

where β is a bivector, β ∈ Λ2T . Given two generalised almost complex structures, Ja

and Jb that are compatible (ie they commute) we also have a positive definite generalised

metric

G = −JaJb . (2.6)

The two generalised almost complex structures reduce the structure group of the metric

from O(d, d) to U
(

d
2

)

× U
(

d
2

)

.

Consider a a generalised complex structure J . Then since J 2 = −�
we can define

projectors 1
2 (1 ± iJ ) that split T ⊕T ∗ into two subspaces L and L̄ that correspond to the

+i and −i eigenvalues of J . The subspace L is maximal isotropic. Isotropic means that

for any v,w ∈ L we have

〈v,w〉 = 0 , (2.7)

where 〈..., ...〉 is the natural bracket on T ⊕ T ∗ defined as

〈X + ξ, Y + η〉 =
1

2
(ξ(Y ) + η(X)) , (2.8)

for general elements X+ξ ∈ T⊕T ∗. Maximal refers to the dimension of the subspace being

the maximum value on the manifold, which is the dimension of the manifold. Then for each

J there is a unique splitting into L and L̄ and conversely, a generalised complex structure

is equivalent to a maximal isotropic subspace L ⊂ (T ⊕ T ∗) ⊗ � such that L ∩ L̄ = {0}.
The type, k, of a maximal isotropic is the co-dimension of its projection onto T . Note

that B-transforms do not change the type. In fact all the maximal isotropic subspaces are

related by B-transforms. β-transforms can change the type by an even number.

2.2 Pure spinors and SU(3) × SU(3) structure

The generalised almost complex structure defined in the previous section can also be

expressed in terms of a pure spinor Φ. This comes from the fact that the subspace L, of

annihilators of a pure spinor Φ

(X + ξ) Φ = 0 , X + ξ ∈ L , (2.9)

is exactly a maximal isotropic subspace. The spinor can in turn be thought of as a formal

sum of forms of even or odd degrees (corresponding to pure spinors with positive and

negative chirality respectively). This is just the generalisation of generating a sum of

forms from a spinor by acting on it with gamma matrices. In terms of the spinor B-

transforms and β-transforms act as Φ → eBΦ and Φ → eβΦ respectively. Just as the

existence of two generalised almost complex structures reduced the metric structure group

to U
(

d
2

)

×U
(

d
2

)

, the existence of two compatible (commuting) non-vanishing pure spinors

reduces the structure group to SU
(

d
2

)

× SU
(

d
2

)

where the extra reduction comes from

the non-vanishing constraint.

In this paper we are concerned with compactifications to four dimensions and so

require a structure group SU(3)×SU(3). Since each spinor also provides a supersymmetry

– 4 –
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parameter we see that compactifications on manifolds with SU(3)× SU(3) structure lead

to N = 2 supersymmetry in four dimensions.

It is possible to prove [60] that a pure spinor must always take the form

Φ = eB+iJ ∧ Ωk , (2.10)

where B and J are real two-forms and Ω is a complex form of degree k. k is the type of

Φ or of the generalised almost complex structure. Then a type 0 spinor is a B-transform

of eiJ which in turn has non-zero norm if J is non-degenerate and is closed if dJ = 0.

Hence it corresponds to a generalised complex structure that is derived from a symplectic

structure as in (2.3). Similarly a type 3 spinor corresponds to a generalised almost complex

structure derived from a complex structure as in (2.2). Then a general pure spinor is some

combination of the two. We note here that in general the type of the spinor may vary

throughout the manifold jumping by even numbers at particular loci on the manifold. It

can also be seen that a B-transform preserves the type of the spinor while a β-transform

in general need not.

An example: �2

In order to illustrate the notions defined above we consider the simple model of �2

In this section we outline a very simple example of how the constructions described in

the previous sections can be realised on the manifold �2. Consider the standard complex

structure on �2 defined by the spinor

Φ = dz1 ∧ dz2 . (2.11)

In terms of the matrix notation the generalised complex structure reads

J =











0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0











. (2.12)

Now we may perform a β transform. Since we have a full generalised complex structure

rather than a generalised almost complex structure we should take the bivector to be

holomorphic β = z1∂z1
∧ ∂z2

. Then performing a transform we find a new spinor

Φβ = z1 + dz1 ∧ dz2 . (2.13)

This is still a generalised complex structure, but now it is not simply induced by a complex

structure. Rather it exhibits the jumping phenomenon between a generalised complex

structure induced by a complex structure and one induced by a symplectic structure. To

see this note that at the locus z1 = 0 we recover the original type 2 generalised complex

structure. Away from this locus we can write the spinor as

Φβ = z1e
dz1∧dz2

z1 = z1e
B+iJ , (2.14)

which is a (B-transform of a) generalised complex structure of type 0, induced by a sym-

plectic structure on the manifold.
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2.3 Generalised geometry and non-geometry

In this section we outline the connection between generalised geometry as described in the

previous sections and the physical view of non-geometry. The motivation is to reconcile

the work in [8, 39] and [51] with the discussion of the previous sections.

We approach non-geometry by considering a T 2 fibration over an S1 given by the

metric,

ds2 = dx2 + dy2 + dz2 , (2.15)

where x is the co-ordinate along the circle and y, z are the co-ordinates on the T 2. As we

go around the S1 we can identify the torus co-ordinates up to a SL(2, �) transformation

which is the symmetry group of the torus. Now we put m units of H flux through the

manifold with a B-field given by

B = m xdy ∧ dz . (2.16)

It was shown in [7, 8] that if we perform a T-duality along one of torus direction we

reach a twisted-torus where now the manifold has torsion but there is no NS flux. The

NS flux has been exchanged for metric fluxes. Performing another T-duality we reach the

configuration

ds2 =
1

1 + m2x2

(

dy2 + dz2
)

+ dx2 ,

B =
mx

1 + m2x2
dy ∧ dz . (2.17)

We now see that if we go around the S1 the T 2 metric is not periodic under an SL(2, �)

transformation but rather under O(2, 2, �). This new symmetry group corresponds to

the geometric SL(2, �) plus T-dualities. Therefore this background can not be described

geometrically in the usual sense. It is termed non-geometric or a T-fold.

In [39] a way of dealing with non-geometric manifolds was proposed. The basic idea is

to double the number of dimensions so that T 2 → T 4, or more generally T n → T 2n for an

n torus. Then the geometric symmetry group becomes SL(2n, �). The extra dimensions,

or degrees of freedom, are then eliminated by a constraint which breaks the symmetry

group down to O(n, n, �). Now this group is large enough to accommodate the T-dualities

as well. The way this is realised in string theory is as follows. For a compactification on

T n, the internal momenta P i, i = 1, .., n, combine with the winding modes wi to form

the momenta P i
L = P i + wi and P i

R = P i − wi. Then the conjugate coordinates are

written as Xi
L = Xi + X̃i and Xi

R = Xi − X̃i, and Xi are T-dual to X̃i. The doubled

formalism treats this as a compactification on T 2n with coordinates X and X̃ , and the

constraint that halves the degrees of freedom is imposing that XL and XR are left-moving

and right-moving coordinates. Practically, this can be done by considering a projection of

the doubled torus to a product torus T 2n → T n ⊕ T̃ n such that the torus T n is identified

with space-time and X are the space-time coordinates. The CFT on the world sheet is

invariant under which projection, or polarisation, we choose to make, i.e. we can rotate

the fields X and X̃ into each other. Then T-duality can be viewed as a rotation on

the projectors. The failure to patch a manifold with geometric transition functions then

corresponds to a failure to have a global polarisation.

– 6 –



J
H
E
P
0
3
(
2
0
0
7
)
1
0
4

The connection to generalised geometry is that under the space-time projection T 2n →
T n the tangent bundle of the double torus is projected to the sum of the cotangent and

tangent bundles of the space-time torus T (T 2n) → (T ⊕ T ∗) (T n). Then choosing the

space-time T n within the T 2n is equivalent to choosing a maximal isotropic subspace or a

pure spinor, which under the projection of the tangent bundle leads to a pure spinor, or a

maximal isotropic subspace, or a generalised almost complex structure in T ⊕T ∗. Then T-

duality, which is a rotation of the projectors, is given by a rotation of J . More precisely the

full symmetry group O(n, n, �) is simply the symmetry group of the generalised metric,

elements of which can be split into three types {β, ϕ,B} where ϕ are elements of the

geometric SL(n, �) subgroup. Then B and β-transforms are non-geometric symmetries.

The B-transforms are identified with shifts of the B-field that mix the metric and B-

fields, and the β-transforms are identified with T-dualities. Patching a manifold with T-

dualities then corresponds to patching with β-transforms. This way we have a (generalised)

geometric formulation of non-geometry.

There is another side to non-geometry that we have not mention so far. This is the

issue of non-commutativity. It was shown in [64] that performing two T-dualities with flux

leads to a non-commutative space. This was related to generalised geometry in [64, 51]

where it was shown that the non-commutativity is felt by open strings that end on separate

patches which are patched by T-dualities. We note then that this non-commutativity only

affects the open string sector and therefore does not alter the analysis in this paper. It is

worth mentioning that there are other non-geometric fluxes, denoted by R in the literature

[41], that arise from three T-dualities along directions with H-flux . These lead to non-

associative manifolds which are non-geometric even locally.

2.4 A supergravity analysis

In this paper we perform a classical supergravity analysis of non-geometric compactifica-

tions. Given that non-geometric T-folds are inherently stringy in nature, a supergravity

analysis requires some justification. In this section we present some reasoning in support

of our approach and argue that our analysis may capture true vacua of the full string

theory. We follow in part the discussions presented in [39, 31].

We begin this section with a brief discussion based on mirror symmetry which justifies

the supergravity approach. This simply follows from the fact that the mirror duals of

non-geometric compactifications are geometric. They can be as simple as a Calabi-Yau

compactification with some H-flux. These compactifications are under control from a

supergravity perspective and so we would expect that under the mirror identification

their duals would also be valid2. The rest of this section is, in a sense, dedicated to

suggesting why the mirror symmetry works. That is to explaining why, by using generalised

geometry, we can recover the IIA (non-geometric) mirrors of magnetic NS fluxes through

a supergravity compactification.

The first problem that a supergravity analysis of a T-fold faces is that the T-dualities

that patch the T-fold mix momentum and winding modes. The ten-dimensional super-

2In this paper we require non-geometric fluxes to find Minkowski vacua on both the IIA and IIB sides

of the mirror. However, for each case the non-geometric fluxes are dual to geometric fluxes. The IIA

non-geometric fluxes are dual to magnetic NS flux, and the IIB non-geometric fluxes are dual to metric

fluxes. Therefore we expect that the mirror symmetry reasoning presented above still holds.
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gravity is derived by integrating out all the winding modes and keeping the momentum

modes. On any particular patch this is valid, in the language of the doubled formalism

we are choosing a polarisation. Globally, such a truncation is not valid since on different

patches winding modes may become lighter than momentum modes following a T-duality.

However, consider compactifying the ten-dimensional supergravity on a T-fold. To derive

a four-dimensional effective theory we must now also integrate out the momentum modes,

keeping only the zero mode (which has no winding equivalent). Therefore, given such a

truncation of both the winding and momentum modes, any mixing should not affect the

four-dimensional theory. In terms of this reasoning the energy scale of the low energy

theory need not be any lower than in a geometric compactification since, if we are below

the scale of a KK mode on a radius R, we are also below the scale of a winding mode on

a radius 1/R.

It is possible that it is the symmetry of the effective four-dimensional theory under

T-dualities of the internal manifold that means the four-dimensional supergravity is the

mirror to a supergravity derived from a geometric compactification. To see how this sym-

metry manifests itself in terms of the four-dimensional superpotential consider compacti-

fying on an SU(3) × SU(3) structure manifold that is patched with B and β-transforms.

As outlined in section 2.3, this is a compactification on a T-fold. We have two pure spinors

Φ± on the manifold, and these would B and β-transform between different patches. Let

us turn off any RR-fluxes for simplicity. We decompose the ten-dimensional NS two-form

B̂ into a part that leads to the four-dimensional fields (axions) B and a part responsible

for background flux Bbg so that the background flux Hbg is given by Hbg = dBbg 3. Then

the four-dimensional superpotential was derived in [30] and reads

W =

∫

M6

〈(

d − Hbg
)

Φ̃+, Φ̃−
〉

. (2.18)

where we absorbed the axions into the spinors e−BΦ± = Φ̃±. The brackets 〈, 〉 denote the

Mukai pairings and are defined in section 3.1. We can rewrite (2.18) in a suggestive way

W =

∫

M6

〈

d
(

e−Bbg

Φ̃+
)

,
(

e−Bbg

Φ̃−
)〉

. (2.19)

Written this way (2.19) is a B-transform of (2.18) with −Bbg where we also transform the

derivative

d − Hbg → d −
(

Hbg + d
(

−Bbg
))

= d . (2.20)

Viewed in this way we can think of B-transforms as gauge transformations with a covariant

derivative DH = d − H that, under a B-transform transforms as DH → DH − dB. The

superpotential

W =

∫

M6

〈

DHbg Φ̃+, Φ̃−
〉

, (2.21)

is then invariant under B-transforms and so can be integrated over a manifold patched

with B-transforms to give the same four-dimensional theory.

3This decomposition becomes more subtle in the presence of metric fluxes and is discussed in section

3.3.1.
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Now we can also ‘gauge’ β-transforms in the same way. The resulting covariant deriva-

tive is then

DH,Q = d − H − Q , (2.22)

where we have introduced a new ’flux’ which is a tensor that under a β-transform trans-

forms as

Q → Q + d ∧ β . (2.23)

Indeed the transformation of Q corresponds to the change of the derivative operator under

β-transforms as shown in [51], and can be thought of as encoding this change. It was also

proposed in [31] by considering the possible fluxes that can be turned on. We now have a

covariant derivative of both B and β-transforms

DH,QΦ± → eβ+B
(

DH,QΦ±
)

, (2.24)

so that the superpotential

W =

∫

M6

〈

DHbg,QbgΦ̃+, Φ̃−
〉

, (2.25)

is invariant under both B and β-transforms and so can be integrated over the internal

manifold to give the four-dimensional theory. The tensor Q can be thought of as a flux

in analogy with H being the NS flux, and in the literature this would be identified with

non-geometric flux. In general the operator D (we henceforth drop the indices) can send

the degree of the form it acts on up one or three and if there is also Q-flux, down one.

Finally we require the condition on the fluxes

iQ H = 0 , (2.26)

for the operator D to be nilpotent.

We have seen that, using the covariant derivative D, the ten-dimensional expression

for the four-dimensional superpotential is invariant under B and β-transforms4. To derive

the effective four-dimensional superpotential in terms of the four-dimensional superfields

we should decompose the spinors in terms of a basis of ‘low energy’ forms. These would

be the harmonic forms on a Calabi-Yau but more generally correspond to a truncation

to a finite subset of forms [14]. These forms would transform under B and β-transforms

in the same way as the spinors. However, as we have shown, such a transformation does

not change the expression for the superpotential which can still be written in terms of the

old basis forms. Therefore the four-dimensional superpotential in terms of the superfields

takes the same form on all the patches of the internal T-fold.5

Having discussed the effects of the mixing of the winding and momentum modes let

us briefly consider quantum effects. The mirror symmetry argument presented at the

beginning of this section should still hold since mirror symmetry should be a quantum

symmetry. In the case of non-perturbative effects such as instantons, gaugino condensa-

tion, light modes, the size of the effects is determined by integrating the calibration form

4Note that also the Kähler potential is invariant since it is given by the Hitchin functional [58, 14]

K = −iln
R

M6

˙

Φ±, Φ±
¸

.
5Note that, as proposed in [31], we could have equally used a normal exterior derivative instead of D

and considered the basis forms to transform so that they become twisted ω → (eβω).
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on the submanifolds they wrap. But these calibration forms are the pure spinors of the

generalised geometry [60]. Therefore the size of these effects should be measured by the

size of the four-dimensional superfields on each patch. Note that, since these appear per-

turbatively in the superpotential, in vacua where they take large values, non-perturbative

corrections to the superpotential will be highly suppressed.

Another possible correction source are α′ corrections due to the small curvature scales

of the T-fold. These could come in the form of corrections to the Kähler potential and

corrections to the superpotential. The corrections to the Kähler potential do not affect

the supersymmetric Minkowski vacua we are studying in this paper. Corrections to the

superpotential may be possible, but in the regime of large fields, which we consider here,

such corrections will still be subdominant. Given this reasoning we proceed with the

compactifications neglecting any possible α′ corrections.

To summarise, we have argued that it may be possible to treat the compactifications

to Minkowski vacua we are studying in this paper as a four-dimensional supergravity.

To remain in the perturbative regime we require the fields to take large values, for the

dilaton this implies weak string coupling, for the geometric moduli the interpretation is a

little less clear but the limit is required to suppress non-perturbative corrections. We also

require to stay below the KK (or equally winding) scale. This is non-trivial to show in

the presence of metric fluxes since the basis forms are no longer harmonic. However, we

expect that there is such a low energy truncation since one exists in a Calabi-Yau mirror

to a manifold with metric fluxes, see also [65, 14, 31] for constraints on these truncations.

Therefore, assuming such a possible low energy truncation, we cautiously proceed with

the supergravity analysis.

3. The compactifications

In this section we derive the superpotential and tadpole constraints of the effective N = 1

theory resulting from compactifications of type II theories on orientifolds with SU(3) ×
SU(3) structure. In both setups we consider an unwarped compactification given by the

product Ansatz of the form M10 = S4×Y6. Here S4 is an unwarped four dimensional space,

while Y6 is a six dimensional compact manifold. After deriving the two four-dimensional

theories independently we give the mirror map under which they can be identified.

Throughout this paper we work in string units as in [55] where we take the basis forms

α,β,... to belong to an integer basis so that in units of 2π/µp−2l
p = 1/l, where p is the

degree of the form, µp−2 is the Dp-brane unit of charge and l = 2π
√

α′ = 1 is the string

length, the fluxes are integers.

3.1 Type IIA compactifications on SU(3) × SU(3) orientifolds

The compactification of type IIA string theory on generalised orientifolds was studied in

[30] and we follow their results in parts of this section. We begin by specifying the two

compatible pure spinors Πod and Πev

Πod = e−BC Ω , (3.1)

Πev = eJc , (3.2)

Jc ≡ −B + iJ , (3.3)
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Here B denotes the (internal part of the) NS two-form that leads to the axions. It does

not include the background contribution Bbg. J is the Kähler form on the manifold,

or more generally, for the non-Kähler cases we study, the almost symplectic two-form.

We then see that Πev is just a B-transform of the generalised almost complex structure

induced by J . In general Πod can have type one, three or five and may jump between

them. For the type three case J and Ω are the SU(3)-structure forms that appear in

standard SU(3)-structure compactifications (including Calabi-Yau compactifications). C

is the compensator field defined as

C ≡ e−φ̂−iθe
1

2
(Kcs−KK) , e−Kcs

= iΩ ∧ Ω̄ , e−KK

=
4

3
J ∧ J ∧ J , (3.4)

where φ̂ is the ten-dimensional dilaton related to the four-dimensional dilaton φ through

e−2φ = e−2φ̂ 4

3

∫

Y
J ∧ J ∧ J . (3.5)

The angle θ is fixed by the calibration condition for the orientifolds. In this paper we

are interested in the compactifications that are mirror to type IIB compactifications with

O3/O7 orientifolds in which case we choose the orientation of the O6 planes so that θ = 0.

The relevant ten-dimensional fields are completed by the RR fields which we define in

formal sums

Cod ≡ C1 + C3 + C5 + C7 + C9 . (3.6)

Note that only half the degrees of freedom in (3.6) are physical. We also have the relevant

field-strengths

F ev = F0 + F2 + F4 + F6 , (3.7)

where F ev = dHCod. It is convenient to define the complex combination

Πod
c ≡ C̃od

(0) + iRe Πod , (3.8)

where C̃od = e−BCod, and the (0) subscript denotes the component that is a four-

dimensional scalar. The four-dimensional superpotential resulting from this compacti-

fication was derived in [30] by reduction of the gravitino mass term. Here we use their

expression but replace the twisted derivative with the full covariant derivative dHbg → D
as explained in the previous section. With the definitions above the superpotential reads

W IIA =

∫

Y

〈

F̂ ev + DΠod
c ,Πev

〉

. (3.9)

The brackets 〈..., ...〉 denote the Mukai pairing of forms defined as
〈

Ψ1,Ψ2
〉

≡ Ψ1
(0) ∧ Ψ2

(6) − Ψ1
(2) ∧ Ψ2

(4) + Ψ1
(4) ∧ Ψ2

(2) − Ψ1
(6) ∧ Ψ2

(0) , (3.10)

for a sums of even forms, and
〈

Ψ1,Ψ2
〉

≡ −Ψ1
(1) ∧ Ψ2

(5) + Ψ1
(3) ∧ Ψ2

(3) − Ψ1
(5) ∧ Ψ2

(1) , (3.11)

for sums of odd forms. The subscripts denote the degree of the component of the forms.

To derive the four-dimensional spectrum of fields we need to specify a finite set of basis

forms on the manifold. Following [14, 30] we consider a finite symplectic form basis

ωÂ = (1, ωA) , ω̃Â =
(

ω̃A,−ε
)

, (3.12)

αK̂ = (α0, αK) , βK̂ =
(

β0, β
K

)

. (3.13)
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The forms have non-vanishing Mukai pairings
∫

Y

〈

ω̃Â, ωB̂

〉

= δÂ
B̂

, (3.14)

∫

Y

〈

αL̂, βK̂
〉

= δK̂
L̂

. (3.15)

In general the forms αK̂ and βK̂ can have components that are one, three and five-forms.

However, since the expression for the superpotential does not depend on which patch, or

‘gauge’, we are on, we can always consider a local SU(3) structure where αK̂ and βK̂ are

three-forms. Under the orientifold projection the forms decompose into [30]

(1, ωa, ω̃
a, ε) ∈ ∆ev

+ ,

(ωα, ω̃α) ∈ ∆ev
− ,

(

α0, αλ, βk
)

∈ ∆od
+ ,

(

αk, β
0, βλ

)

∈ ∆od
− . (3.16)

The sets ∆± denote forms that are even or odd under the orientifold projection. The

index ranges are therefore a = 1, ...,dim∆2
+, α = 1, ...,dim∆2

−. For the three-forms we

consider the index ranges k = 1, ...,dim∆od
+ − 1 and λ = {ø}. This is a choice we have in

the definition of the basis forms 6. Under the orientifold splitting we have that

Πev ∈ Λev
+ ,

Πod
c ∈ Λod

+ . (3.17)

Therefore we decompose the forms into four-dimensional superfields as

Πev = 1 + iT aωa −
1

2
T aT bKabcω̃

c − i

6
T aT bT cKabcε ,

Πod
c = iSα0 + iUkβ

k , (3.18)

where we have introduced the analog of the intersection numbers

Kabc ≡
∫

Y
ωa ∧ ωb ∧ ωc . (3.19)

We write the superfields in terms of real component fields as

T a = ta + iba , (3.20)

Uk = uk + iνk , (3.21)

S = s + iσ . (3.22)

The imaginary components of the superfields are usually referred to as axions, a terminol-

ogy that we keep, even though they all lose their axionic shift symmetries once fluxes are

turned on. We refer to the fields ta as the Kähler moduli and to uk as the complex struc-

ture moduli, again keeping in mind that these manifolds need not be Kähler or complex.

6The more general case where we allow a non-trivial index range for λ does not change anything in a

fundamental way, rather we just need to turn on appropriate fluxes to recover the same superpotential. It

makes the analysis more complicated however.
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Finally the field s is the related to the dilaton through the definition of the compensator

field C.

The fluxes transform under the orientifold action such that

F ev ∈ Λev
+ ,

H ∈ Λ3
− . (3.23)

Turning on background fluxes raises a delicate issue that is discussed in more detail in

section 3.3.1 where the distinction between a background flux and an axion vacuum ex-

pectation value is made more rigorous. For now we decompose the field-strengths H and

F ev as

F ev = F bg + dCod , (3.24)

H = Hbg + dB , (3.25)

and we set

F bg = −m0 + paωa − qaω̃
a − e0ε , (3.26)

Hbg = −h0β
0 + hkαk . (3.27)

We take the background flux parameters to be integer quantised (ignoring any possible

subtleties with half-integer values induced by orientifolds).

To calculate the superpotential we should also specify the differential properties of

the basis forms. In general they need not be harmonic, i.e. closed and co-closed. Indeed

if there is torsion on the manifold they will not be. The torsion is usually referred to as

metric fluxes, an appropriate term when it comes to looking at mirror symmetry where

these fluxes are dual to electric NS flux. On our manifold we generally also have non-

geometric Q-flux, this appears like metric fluxes but corresponds to the degree of the

form decreasing by one. They are mirror dual to magnetic NS flux [14, 30, 31]. For the

differential relations of the basis forms we take 7

Dα0 = −maωa − eaω̃
a − h0ε ,

Dβk = −e k
a ω̃a − hkε ,

Dωa = −eaβ
0 + e k

a αk ,

Dω̃a = maβ0 . (3.28)

All other forms are closed. The fluxes ea and e k
a are the metric fluxes and ma are the non-

geometric fluxes. These relation are not the most general relations, we have not turned on

all the possible fluxes. Rather we have turned on the minimum amount of fluxes needed

to find the Minkowski vacua. We note that we are in a sense allowing ourselves too much

freedom. The metric, and non-geometric, fluxes will be fixed by the particular manifold

we are choosing to compactify on. However, all our fluxes, metric and non-geometric, have

mirrors that are simply NS fluxes [7, 30, 66, 31] and so should in principle be tunable even

though we may not have an explicit manifold for every choice.

7We have included only the background contribution, Hbg, of the NS flux to the operator D. This is

consistent with our approach in section 3.3.1.

– 13 –



J
H
E
P
0
3
(
2
0
0
7
)
1
0
4

Substituting all this into the superpotential (3.9), and integrating over the internal

manifold, we find

W IIA =
i

6
m0 Kabc T aT bT c +

1

2
Kabc pcT aT b − iqa T a + e0

− i

2
SKabc maT bT c + SeaT

a + e k
a UkT

a + ih0S + ihkUk . (3.29)

This type of superpotential was already proposed in [49, 55] through mirror symmetry.

3.1.1 IIA tadpoles and Bianchi identities

In this section we write the constraints that arise from tadpole constraints/Bianchi iden-

tities. In the RR sector we have the tadpole constraint/Bianchi identity [63]

dHF ev = δsource . (3.30)

Again, we generalise this to

DF ev = δsource . (3.31)

The localised RR charged sources are denoted by δsource and can be wrapped D6 branes

or O6 orientifolds. It is important to notice that the full field-strengths, rather than just

the background ones, appear in the relations. Hence, in general, there is a contribution

from the vacuum expectation values of the axions. This issue is discussed in more detail

in section 3.3.1 and for now we only include the background flux Hbg in the expressions.

Putting the expressions for the field-strengths into the Bianchi identity we find
(

−m0h0 − paea − maqa

)

β0 −
(

m0hk + pae k
a

)

αk = δsource . (3.32)

Following [15, 63] we proceed to ’smear’ the localised sources so that (3.32) can be solved

for each component. This involves replacing the localised sources with integer charges

multiplying an appropriate form. The sign of the resolved forms is fixed by an appropriate

calibration condition as in [63]. Where for a resolved form γ we require 8

〈

Im
(

Πod
c

)

, γ
〉

∼ +ε . (3.33)

With the sign fixed in this way we reach the constraints

−m0h0 − paea − maqa = Q0 ≡ 2ND6
0 − 4NO6

0 , (3.34)

−m0hk − pae k
a = Qk ≡ 2Nk, D6 − 4Nk, O6 , (3.35)

where Nk, 06/D6 denotes the number of O6/D6 planes wrapped on the submanifold βk.

The Bianchi identity for the NS flux reads dH = 0. Note that using the condition for D
to be nilpotent, (2.26), the Bianchi identity can be written as DH = 0 which is identically

satisfied for our choice of fluxes. Finally, the differential relations for the basis forms (3.28)

impose a self consistency constraint, obtained by taking two derivatives

mae k
a = 0 . (3.36)

Notice that we do not consider any non-Abelian gaugings to be generated by ((non)-

geometric) fluxes and therefore the number of constraints which we have for the parameters

are less than in the twisted tori case 9.
8There is a minus sign with respect to the conventions of [63] due to the different definitions of the

Mukai pairings.
9We thank Pablo Camara for pointing us this fact.
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3.2 Type IIB compactifications on SU(3) × SU(3) orientifolds

These compactifications follow in a very similar way to the IIA compactifications discussed

in section 3.1 and so we just outline the important steps. The orientifolds we consider are

of the O3/O7 type. The compactification was also studied in [30].

The pure spinors are

Φod ≡ e−BΩ , (3.37)

Φev ≡ e−φ̂eJc . (3.38)

The RR form fields are all even and we define the formal sums

Cev ≡ C0 + C2 + C4 + C6 + C8 ,

F od ≡ F1 + F3 + F5 . (3.39)

We form the complex superfield combination

Φev
c ≡ Cev

(0) + iRe Φev , (3.40)

where Cev
(0) denotes the component of Cev that is a four-dimensional scalar. With this the

superpotential reads [30]

W IIB =

∫

Ỹ

〈

F3 + DΦev
c ,Φodd

〉

, (3.41)

where Ỹ denotes the internal manifold, and we have replaced dH → D. In order to compute

the four-dimensional spectrum we restrict to a finite symplectic basis of forms as in (3.16).

Under the orientifold projection these split as

(1, ωα, ω̃a) ∈ ∆ev
+ , (3.42)

(ωa, ω̃
α, ε) ∈ ∆ev

− , (3.43)
(

α0, αk, β0, β
k
)

∈ ∆od
− , (3.44)

(

αλ, βλ
)

∈ ∆od
+ . (3.45)

As in the IIA case we truncate the spectrum so that the index α = {ø}. Under the

orientifold action we have that

Φev
c ∈ Λev

+ ,

Φod ∈ Λod
− , (3.46)

and so we decompose the spinors into superfields as

Φev
c = iτ − iTaω̃

a ,

Φodd = α0 + iUkαk +
1

2
UkU lκklmβm − i

6
UkU lUmκklmβ0 . (3.47)

Here the coefficients κklm feature in the prepotential for the complex structure moduli.

We write the superfields in terms of their real component fields as

Ta = ta + iba ,

Uk = uk + iνk ,

τ = e−φ̂ + iσ . (3.48)
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We now turn to specifying the fluxes. The background fluxes we consider are

Hbg = mkαk − ekβ
k + h0β

0 ,

F bg
3 = −m0α0 + pkαk + qkβ

k − e0β
0 . (3.49)

The metric and non-geometric fluxes are specified in the differential relations for the forms

which we take to be

Dα0 = haωa + h0ε ,

Dαk = −e a
k ωa − ekε ,

Dω̃a = −e a
k βk + haβ0 . (3.50)

With these conventions the superpotential (3.41) evaluates to

W IIB =
i

6
m0 κklm UkU lUm +

1

2
κklm pkU lUm − iqk Uk + e0

− i

2
τκklm mkU lUm + Tae

a
k Uk + ihaTa + τekU

k + ih0τ . (3.51)

3.2.1 IIB tadpoles and Bianchi identities

The Bianchi identities or tadpole conditions for the IIB case read [63]

DF od = δsource . (3.52)

Putting in the expressions for the field-strengths and regularising the sources we find

−m0h0 − mkqk − ekp
k = Q0 ≡ 2ND3 − 1

2
NO3 ,

−pke a
k − m0ha = Qa ≡ 2Na, D7 − 8Na, O7 . (3.53)

We also have the constraint arising from the Bianchi identity for the NS field DH = 0

mke a
k = 0 . (3.54)

3.3 The mirror map

The two four-dimensional theories derived in sections 3.1 and 3.2 were constructed as a

mirror pair. It is clear that the superpotentials (3.29) and (3.51), and pure spinors (3.18)

and (3.47), match under the identification of the superfields

τ ↔ S , Uk ↔ T a , Uk ↔ Ta , (3.55)

and the basis forms

1 ↔ α0 , ωa ↔ αk , ω̃a ↔ −βk , ε ↔ β0 , (3.56)

The mirror fluxes on each side are denoted by the same symbols. Note that on the IIB

side τ is the ten-dimensional dilaton and on the IIA side S is the compensator field defined

in (3.4). The actual equivalence is at the four-dimensional dilaton level. The quantity we

should keep large is the inverse string coupling which is the ten-dimensional dilaton

g−1
s = e−φ̂ À 1 . (3.57)
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3.3.1 Exact flux and axions

In section 3.1 we faced the problem of whether to include the contribution from the axions,

ba, to the tadpole equations. Recall that due to the non-closure of the forms in which we

expand, a non-trivial vacuum expectation value for the B-field on the internal manifold can

lead to a change in the H-flux. The tadpole conditions as stated in (3.35) only include a

contribution from a ’background’ flux Hbg. From a ten-dimensional point of view however,

the Bianchi identities are not sensitive to the splitting between the background flux and the

vacuum expectation values for the axions. This motivates the argument that the axions

vevs should feature in the tadpole conditions. With the axion contributions the tadpole

conditions (3.35) read

(

−m0ea < ba >
)

− m0h0 − paea − maqa = Q0 ,
(

−m0e k
a < ba >

)

− m0hk − pae k
a = Qk , (3.58)

where < ba > denoted the vacuum expectation value for the scalar field ba. Therefore, in a

vacuum with non-vanishing combinations eab
a or e k

a ba, if we solve the conditions without

the axions (3.35) then we do not solve the ten-dimensional Bianchi identities.

Even if the argument above for taking into account the axion vevs into the tadpole

conditions sounds convincing, there are also other things one should consider. One of the

main problems to be addressed is the fact that on the mirror IIB side this does not seem

to have any obvious analog. This problem arises even in the simplest cases of half-flat

manifolds as in [7]. A possible resolution could be that we should only identify the two

theories in a particular vacuum, and this would be one where the axion combinations eab
a

and e k
a ba vanish. As the IIB mirrors to the NS axions are the real parts of the complex

structure moduli, it may be that (see footnote 23 in [63]) non trivial values for them break

isometries of the manifold that are required to perform the mirror symmetry. Another

possible way out is if we consider the NS flux on the IIB side to be sourced by NS5-branes

wrapped on cycles dual to the ones with flux. The calibration condition for the branes is

then the mirror condition to requiring that the axions on the IIA side vanish.

In this work, we adopt the following a pragmatic approach that is correct in both

cases and which is at most a superfluous constraint on the fluxes. We look for vacua where

the combinations eab
a and e k

a ba vanish. We implement this practically by assuming that

these combinations vanish and using the tadpole conditions (3.35) to solve for the fields.

Then choose the fluxes so that in the vacuum this condition is satisfied thereby justifying

our assumption. This procedure is clarified in the next section, where we present explicit

solutions.

4. Supersymmetric Minkowski vacua

In this section we analyse the vacuum structure of the superpotentials (3.29) and (3.51).

We search for supersymmetric Minkowski vacua that are solutions to the equations

∂T aW = ∂Uk
W = ∂SW = W = 0 . (4.1)

We begin this section with some no-go theorems regarding the existence of physical

Minkowski vacua in our set-up, placing constraints on the type of manifold we should
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compactify on. In section 4.2 we focus on cases with a reduced number of fields, and study

explicit realisations of Minkowski vacua. Then, in section 4.2.4, we provide some argu-

ments to tackle the general case. Throughout this section we work in type IIA notation,

with the superpotential given in formula (3.29).

We note that in [13, 55, 49] searches for Minkowski vacua were conducted and examples

of supersymmetric Minkowski vacua were found but with not all of the moduli fixed. Some

arguments regarding constraints on fixing all the moduli, similar to the no-go theorems

we are going to discuss, were consequently presented.

4.1 Some no-go theorems

In this section we note two conditions that the compactification manifold must satisfy

for Minkowski vacua with all the moduli stabilised to exist. We work in a completely

perturbative regime and all our statements are with respect to the superpotential (3.29).

More fluxes, non-perturbative or higher order effects would change the superpotential, and

mean that our statements are not applicable. In section 4.1.1 we show that for the IIA

superpotentials we are considering, in the absence of non-geometric fluxes there are no

Minkowski vacua at finite volume with all the moduli stabilised 10. In section 4.1.2 we

show that in IIA the number of Kähler moduli must be larger than the number of complex

structure moduli in order for all the moduli to be stabilised, with the mirror statement

also holding in IIB.

4.1.1 No SUSY Minkowski with all moduli stabilised for IIA/O6 without non-

geometric fluxes

We set out to show that without non-geometric fluxes it is impossible to stabilise all the

moduli in a supersymmetric Minkowski vacuum. The general superpotential we consider

is given by (3.29). In order to end with a Minkowski vacuum, we must impose (4.1). Let

us consider the following combination, that must vanish at the minimum we are interested

in

Im
(

ta∂T aW + uk∂UkW + s∂SW − W
)

= 0 . (4.2)

A straightforward computation using the superpotential (3.29) shows that the condition

(4.2) can be rewritten as
m0

3
Kabct

atbtc = sKabcm
atbtc . (4.3)

If we consider vanishing non-geometric fluxes, ma = 0 for all a, the right hand side of

(4.3) vanishes. The left hand side is proportional to the volume of the compactification

manifold. This implies that the only way to satisfy this relation is to choose m0 = 0. This

leaves us with a superpotential that is at most quadratic in the fields.

To proceed with the argument, it is convenient to combine the superfields into one

set of fields T̃Σ ≡
(

T a, S, Uk
)

, with index Σ,Λ = 1, ...,dim∆2
+ + dim∆od

+ . We decompose

the fields into real and imaginary part as T̃Σ = t̃Σ + iτ̃Σ. The superpotential (3.29) can

consequently be rewritten as

W = bΣΛT̃ΣT̃Λ + icΣT̃Σ − e0 , (4.4)

10The IIB case is much simpler, since the dependence on Kahler moduli only comes from non-geometric

fluxes.
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where bΣΛ is a square, symmetric, real matrix and cΣ a real vector, both depending only

on the flux parameters. The condition for a supersymmetric vacuum in Minkowski space,

∂T̃ΣW = 0 decomposed into real and imaginary parts reads

bΣΛt̃Λ = 0 , (4.5)

2bΣΛτ̃Λ + cΣ = 0 . (4.6)

Contracting (4.6) with t̃Σ and using (4.5) we obtain

cΣ t̃Σ = 0 . (4.7)

Note that these equations always have a flat direction as rescaling the fields t̃Σ by some

number leaves them unchanged. In principle this can be resolved by the additional con-

straint W = 0 which has to be satisfied in a Minkowski vacuum. However it is easy to see

that the above equations conspire to eliminate any dependence of W on t̃ at the critical

point leaving us with the flat direction. Finally, as this direction is a proper geometric

modulus it has no chance of being the QCD axion and therefore leaving it unfixed is

undesirable.

4.1.2 No SUSY Minkowski for IIA with all moduli stabilised if dim∆2
+ ≤ dim∆od

+

−1

Recall that the number of complex structure moduli in the compactification is given by

dim∆od
+ −1, and the number of Kähler moduli is given by dim∆2

+. Then the no-go theorem

states that me must have more Kähler moduli than complex structure moduli.

Consider the case dim∆2
+ ≤ dim∆od

+ − 1. We allow ma 6= 0 which implies that (4.3)

can be solved without imposing that all the cubic terms in the superpotential vanish.

Consider the equations ∂T aW = 0, that depend on the complex structure moduli. These

impose the following system of equations

e k
a uk = fa , (4.8)

where fa are expressions that depend on the value of the Kähler moduli and the dilaton

at the minimum. Since the complex structure moduli uk appear at most linearly in the

superpotential, the conditions ∂Uk
W = 0 do not depend on these fields. Also the vanishing

of the imaginary part of the superpotential adds no extra constraints on the uks, and the

real part of the superpotential depends on the same linear combination e k
a uk as the

constraint (4.8). This means that only the combination e k
a uk of the complex structure

moduli is constrained.

Now consider the real part of ∂Uk
W = 0. This imposes that the Kähler moduli must

satisfy the following system of equations

tae k
a = 0 . (4.9)

This implies that, since we cannot accept values ta = 0, the matrix e k
a can not have

maximal rank. Therefore there is always at least one combination of the fields uk that

remains unconstrained. Again, since this direction represents the dimension of a certain

cycle it can not serve as the QCD axion and thus leaving it unfixed is undesirable.
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4.2 Supersymmetric Minkowski vacua

In this section we consider compactifications leading to Minkowski vacua. We consider

some tractable cases that we can solve explicitly, although in section 4.2.4 we show that

the important features of the simpler cases generalise to a larger number of moduli. In

section 4.2.1 we study the case with a single Kähler modulus and no complex-structure

moduli. From a supergravity point of view this case only really makes sense on the IIA

side since the IIB equivalent would have no Kähler moduli. From a string theory point

of view however this is fine and Minkowski vacua for such a case were constructed in [5].

These may be mirrors to the examples we study with no complex structure moduli on the

IIA side. In section 4.2.2 we consider the case with a complex structure modulus, which

then requires (at least) two Kähler moduli. In section 4.2.3 we study the case with three

Kähler moduli and no complex structure moduli, which is the closest we can get to an

explicit example. Finally in section 4.2.4 we make some statements regarding the general

case. We mostly work in IIA notation, although it is clear, at least for the cases with

complex structure moduli, that these vacua are valid also in the IIB case under the mirror

map outlined in section 3.3.

4.2.1 One Kähler modulus and no complex structure moduli

The index ranges for this case are simply a = 1 and k = {ø}. The superpotential (3.29)

simplifies to

W =
i

6
km0

(

T 1
)3

+
1

2
kp1

(

T 1
)2 − iq1 T 1

− i

2
m1kS

(

T 1
)2

+ e1ST 1 + ih0S + e0 , (4.10)

where k is the single intersection number k = K111. The tadpole conditions (3.35) reduce

to the single condition

e1p
1 + m0h0 + q1m

1 = −Q0 . (4.11)

As discussed in section 3.3.1 we do not include a possible axion contribution. We solve

this tadpole equation by taking

q1 = − 1

m1

(

e1p
1 + m0h0 + Q0

)

. (4.12)

This eliminates q1 from further equations and guarantees that the tadpole is solved. How-

ever it also places the constraint on the other fluxes that there is a solution to (4.12) with

q1 integer.

We proceed to solve the equations (4.1) for the superpotential (4.10). Imposing ∂SW =

0 gives

b1 = − e1

m1k
, (4.13)

(

t1
)2

=
2h0

m1k
− e2

1

(m1k)2
. (4.14)
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Since we would like vacua with vanishing axion we henceforth set e1 = 0 thereby justifying

not including it in the tadpole condition. The condition ∂T 1W = 0 gives

σ = − p1

m1
, (4.15)

s =
1

k (m1)2 t1

(

2m0h0 + Q0

)

. (4.16)

We now wish to impose the condition W = 0. We begin by solving for a vanishing

imaginary part and return to the real part later. The combination

Im
(

t1∂T 1W + s∂SW − W
)

= 0 , (4.17)

becomes the constraint

3m1s = m0t1 , (4.18)

which can be solved by taking

h0 = − 3Q0

4m0
. (4.19)

Again we have the constraint on the fluxes that there is a solution for h0 integer. Substi-

tuting this into (4.16) and (4.14) we recover

s =
1

m1

√

−Q0m0

6km1
, (4.20)

t1 =

√

−3Q0

2m0m1k
. (4.21)

Now we see that the value of the Kähler modulus is capped by the orientifold charge.

Although we can go to arbitrarily weak coupling this decreases the value for t1 such

that the product st1 is constant. Note also that if Q0 > 0 there are no solutions. We

therefore satisfy the no-go theorem of [63] which states that all the Minkowski vacua must

have orientifolds present. We also need to check that the real part of the superpotential

vanishes. This can always be done by choosing e0 appropriately, with the constraint on

the fluxes that it should be integer. For this case the solution is

e0 =
3p1Q0

4m0m1
. (4.22)

We now need to check that we can choose the fluxes such that they are all integer. We

first note that the flux p1 only features in the value of the axion σ. Then we are free to

choose it as we like without changing the values of the geometric moduli. It is clear that

it can be chosen such that q1 and e0, as written in (4.12) and (4.22), are integers. The

flux h0, as in (4.19), can be made integer by taking m0 to be 1 or 3, since Q0 must be a

multiple of 4. We therefore see that we have a fully consistent solution, which for enough

orientifolds, can be at large values for the moduli.

We do not perform any analytic vacua counting since there are too many constraints

to be satisfied by the fluxes. We note that, although p1 only features in the axion value,

the number of vacua is not infinite since in counting vacua we should gauge fix the integer

axionic shift symmetry of the superpotential

σ → σ + 1 , p1 → p1 − m1 , q1 → q1 + 1 , e0 → e0 + h0 , (4.23)
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by taking

0 ≤ p1 < |m1| . (4.24)

There are a number of known nearly-Kähler manifolds that have SU(3)-structure

which have a single Kähler modulus and no complex-structure moduli, see [67] for a list.

We would require a non-geometric deformation of these manifolds to reach the vacua we

have found in this section. See section 4.2.3 for a similar point for the case with three

Kähler moduli.

To summarise we find Minkowski vacua with all the moduli stabilised and tadpole

conditions satisfied. The values of the moduli and dilaton are capped by the orientifolds

charge.

4.2.2 Two Kähler and one complex structure moduli

We now study the two Kähler moduli and one complex structure modulus case. The index

ranges are therefore a = 1, 2 and k = 1. We have the superpotential

W =
i

6
m0k0

(

T 1
)3

+
i

2
m0k1T

2
(

T 1
)2

+
i

2
m0k2T

1
(

T 2
)2

+
i

6
m0k3

(

T 2
)3

+
1

2
k0p

1
(

T 1
)2

+
1

2
k2p

1
(

T 2
)2

+
1

2
k1p

2
(

T 1
)2

+
1

2
k3p

2
(

T 2
)2

+ k2p
2T 1T 2

+ k1p
1T 1T 2 − iq1 T 1 − iq2T

2 + e0

− i

2
k2m

1S
(

T 2
)2 − i

2
k1m

2S
(

T 1
)2 − i

2
k3m

2S
(

T 2
)2 − ik2m

2ST 1T 2 − ik1m
1ST 1T 2

− i

2
k0m

1S
(

T 1
)2

+ e1ST 1 + e2ST 2 + e3UT 1 + e4UT 2 + ih0S + ih1U , (4.25)

where we denote e 1
1 = e3, e

1
2 = e4. The intersection numbers are denoted as

k0 = K111 ,

k1 = K112 ,

k2 = K122 ,

k3 = K222 . (4.26)

The tadpole conditions read

p1e1 + p2e2 + m0h0 + q1m
1 + q2m

2 = −Q0 , (4.27)

p1e3 + p2e4 + m0h1 = −Q1 , (4.28)

m1e3 + m2e4 = 0 . (4.29)

We solve the tadpole conditions by fixing q1, h1 and m2 in terms of the other fluxes whilst

keeping in mind that we have the constraints that they should be integer.

We now go on to solve the supersymmetry variations. The solutions for the axions

read

b1 =
m0e4

2 (e2 e3 − e1 e4 ) −
(

e4
2 k1 − 2 e3 e4 k2 + e3

2 k3

)

m1
(

e3 p1 + e4 p2 + Q1
)

(e4
3 k0 − 3 e3 e4

2 k1 + 3 e3
2 e4 k2 − e3

3 k3) m0 m1
,

b2 =
−m0e3e4 (e2 e3 − e1 e4) +

(

e4
2 k0 − 2 e3 e4 k1 + e3

2 k2

)

m1
(

e3 p1 + e4 p2 + Q1
)

(e4
3 k0 − 3 e3 e4

2 k1 + 3 e3
2 e4 k2 − e3

3 k3) m0 m1
.
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As discussed in section 3.3.1 we impose the conditions that the combinations eab
a and

e k
a ba vanish giving the constraints

e2e3 = e1e4 ,

e3 p1 + e4 p2 + Q1 = h1 = 0 . (4.30)

We can solve these conditions by eliminating e1 and p1. The moduli values in the vacuum

then read

t1 = e4

√

3

2

√

−e4Q0 + e2Q1

m0m1F1
,

t2 = −e3

e4
t1 ,

s =
m0

3m1
t1 ,

u =
3m1Q1F2 − e2m

0F1

3e4m1F1
t1 , (4.31)

where we define the quantities

F1 ≡ (e4)
3 k0 − 3e3 (e4)

2 k1 + 3e4 (e3)
2 k2 − (e3)

3 k3 , (4.32)

F2 ≡ − (e4)
2 (k1)

2 + (e4)
2 k0k2 + e3e4k1k2 − e3e4k0k3 + (e3)

2 k1k3 − (e3)
2 (k2)

2 .

We have eliminated h0 by requiring that the imaginary part of the superpotential vanishes.

Its explicit value is given in the appendix along with the values of the axions. Similarly

the real part of the superpotential fixes the flux e0. The solution (4.31) is a Minkowski

vacuum with all the moduli stabilised. The values of the fluxes can be chosen so that

all the moduli are positive and large. We later study the number of such vacua, but for

now we outline a family of solutions where the moduli can be made parametrically large.

Consider setting the fluxes e4 = −e3 = m0 = m1 = 1 and taking e2 large. Then the

solution for the moduli reads

t1 = t2 = 3s ∼
√

3

2F1

√

e2Q1 ,

u ∼ −1

3
e2 t1 . (4.33)

Then if we take Q1 < 0 and e2 < 0 we have a parametrically controlled family of solutions

where we can reach arbitrarily large values for the moduli. In terms of the size moduli

and string coupling11 this solution reads

IIA : t1, t2 ∼ |e2|
1

2 , e−φ̂ ∼ |e2|
1

2 , u ∼ |e2|
3

2 ,

IIB : u1, u2 ∼ |e2|
1

2 , e−φ̂ ∼ |e2|
1

2 , t ∼ |e2|
3

2 . (4.34)

At this point it is worth noting how the parametrically controlled vacua satisfy the

no-go theorem of [63]. Although it is clear that we require orientifolds wrapped over α1,

since Q1 < 0, this need not be the case for Q0 since it can be positive. At first this leads

11In the type IIA case the ten-dimensional dilaton scales as e−φ̂ ∼
“

su3

t6

” 1

4

.
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to an apparent contradiction since we can take Q0 large and positive and Q1 small and

negative (which is fine as long as e2 is large and negative) so that if we sum over the total

charges present the result is an overall positive charge. The resolution of this is to note

that the no-go theorem states that
∫

Y

〈

Im Πod
c , δsource

〉

= Q0s + Q1u ∼ |e2|
1

2

(

Q0 + Q1|e2|
)

< 0 . (4.35)

Hence we see that the charge Q1 is weighted by an extra factor of |e2| thereby satisfying

the no-go theorem.

We still have the requirement on the solutions that the tadpoles and other consistency

equations are solved for integer values of the fluxes. Because there are may of these

constraints it is difficult to perform an analytical estimate of the number of vacua within

a flux range. Also since we are not restricted to a particular manifold we have a large

number of free parameters. A full analysis of the number of vacua is therefore beyond the

scope of this paper. Instead we present a simple analysis, which is intended to give an

idea for the numbers. We consider the intersection numbers12

K111 = 0 , K112 = 0 , K221 = 4 , K222 = 2 . (4.36)

We count the number of Minkowski vacua that have all the moduli larger than some value

t1, t2, u, s ≥ Xmin where all the tadpoles vanish and the fluxes take integer values. We

also fix the the orientifold/D-branes charges to be Q0 = Q1 = −32. We then scan over

the flux parameters e4, e3, e2,m
0,m1 within an integer range −M, ...,M . We also have the

free fluxes p2 and q2. However we restrict the values of these fluxes in order to fix left over

integer axionic symmetries so as not to overcount the vacua drastically. The symmetries

are

σ → σ + 1 , (4.37)

which can be absorbed into a flux redefinition

e0 → e0 + h0 , pa → pa − ma , qa → qa + ea . (4.38)

We fix this by constraining

0 ≤ p2 < |m2| = −m1e3

e4
. (4.39)

Similarly we fix the shifts of ν by constraining

0 ≤ q2 < |e4| . (4.40)

With these constraints the number of vacua are presented in table 1. Note that the vacua

are relatively sparse. This is primarily because the constraint on e0 being integer which is

difficult to satisfy.

To summarise, we find that in the case of two Kähler moduli and one complex structure

modulus there is a parametrically controlled family of Minkowski vacua with arbitrary large

values for the moduli. In section 4.2.4 we show that this situation is generic as long as we

have at least one complex structure modulus.

12The intersection numbers are those of the complete intersection Calabi-Yau

 

2 | 3

3 | 4

!

.
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M/Xmin 1 2 3 4 5

10 33 0 0 0 0

20 206 5 0 0 0

30 481 33 0 0 0

40 898 94 5 0 0

50 1525 250 48 12 6

Table 1: Table showing the number of vacua with all the moduli larger than Xmin as a function of

the flux parameters range M for the intersection number choices (4.36) and the orientifold charges

Q0 = Q1 = −32.

4.2.3 Three Kähler moduli and no complex structure moduli

In this section we consider the case of three Kähler moduli and no complex moduli. The

main reason for studying this is that SU(3) structure examples of these manifolds are

known. For example the tori in [68] and the coset manifold in [12]. We therefore require

non-geometric deformations of these manifolds in order to reach the type of superpotentials

we are studying. These could be obtained by T-dualising the torus with H-flux along two

directions and then modding out by a Z3 × Z3 orbifold symmetry. We leave a solid

construction of such manifolds for future work and go on to study the superpotential.

Since both the known examples are parallelisable manifolds on which the two-forms are

constructed as a product of one-forms, the only non-vanishing intersection number is the

one with no repeated indices. We make the simplifying assumption that this is also the

case at hand and take the only non-vanishing intersection

K123 = 1 . (4.41)

With this the superpotential reads

W = im0T 1T 2T 3 + p1T 2T 3 + p2T 1T 2 + p3T 1T 2 − iq1T
1 − iq2T

2 − iq3T
3 + e0

−iSm1T 2T 3 − iSm2T 1T 3 − iSm3T 1T 2 + Se1T
1 + Se2T

2 + Se3T
3 + ih0S .(4.42)

Since there are no new features in this type of superpotential rather than solving it gener-

ally we look for a particular solution. It is easy to find a solution where the fields are all

equal and the fluxes with the varying indices are set equal. Then solving the supersym-

metry equations is equivalent to solving the one Kähler modulus case as in section 4.2.1.

The solution reads

b1 = b2 = b3 = 0 ,

t1 = t2 = t3 =

√

−Q0

4m0m
,

σ = − p

m
,

s =
m0

3m

√

−Q0

4m0m
, (4.43)

where we solved the tadpoles by setting

q = − 1

3m

(

m0h0 + Q0

)

. (4.44)
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4.2.4 The general case

In this section we discuss the general case where the number of moduli fields is arbitrary

up to the constraint dim∆2
+ > dim∆od

+ − 1. Then equation (4.8) means that if the matrix

e k
a does not have maximal rank we can not stabilise all the complex structure moduli. We

set out to show that if e k
a does have maximal rank then there are always solutions with

all the moduli stabilised. Further we show that, as long as there is at least one complex

structure modulus, these solutions are ones where the moduli can be parametrically taken

to arbitrary large values. We do this by outlining a particular class of solutions, rather

than finding the most general vacuum. We do not impose the integer constraints on the

fluxes and assume that, by performing scans like the one in section 4.2.2, solutions can be

found where all the fluxes are integers.

Before proceeding it helps to introduce some notation for the index ranges of the

fluxes and moduli. Let there be n = dim∆2
+ Kähler moduli with the index a running from

1, ..., n. Then we introduce the indices ã and ā which have the ranges ã = 1, ..., p and

ā = p + 1, ..., n, where p is the number of complex structure moduli p = dim∆od
+ − 1.

We now go through the conditions for a supersymmetric Minkowski vacuum and indi-

cate the degrees of freedom fixed by each condition. We look for a solution where all the

NS axions vanish ba = 0. This is sufficient to have no ambiguity in the tadpole conditions.

We start with the condition on the superpotential vanishing. The imaginary part of

this condition reads
m0

3
Kabct

atbtc = sKabcm
atbtc . (4.45)

We solve this condition by fixing the value of the dilaton s. We also impose positive

intersection numbers and positive values for for the fluxes m0 and ma so that if the ta are

positive so is the dilaton. We also see that the dilaton scales like ta. The real part of the

superpotential imposes a condition on e0 which fixes its value. Now, consider the real part

of the condition ∂SW = 0 which gives

eãt
ã + eāt

ā = 0 . (4.46)

We solve this condition by fixing one of the fluxes eā. The imaginary part of the derivative

gives

h0 =
1

2
Kabcm

atbtc , (4.47)

which we solve by fixing h0. The imaginary parts of the conditions ∂Uk
W = 0 impose that

hk = 0. The real parts give the p conditions

e k
ã tã + e k

ā tā = 0 . (4.48)

Since the matrix e k
a has maximal rank, we can choose the square matrix E1 ≡ e k

ã to

have non-vanishing determinant. Therefore, if we also define E2 ≡ e k
ā , we can solve the

constraints (4.48) by taking

tã = −
(

E1
−1E2

)ã

ā
tā . (4.49)

We now impose the conditions on the fluxes that −
(

E1
−1E2

)ã

ā
is positive. This does not

fix the fluxes but does limit their possible values. It means that if the tā are positive,

so are tã. For alter convenience we also impose E1 = (E1)
T which halves the degrees of
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freedom. Let us now focus on a solution in which tā = αmā. The real constant α sets the

scale of the moduli ta and s. The final set of conditions come from ∂T aW = 0. These are

n constraints that read

i

2
m0KabcT

bT c + Kabcp
bT c − iqa − iKabcSmbT c + eaS + e k

a Uk = 0 . (4.50)

Taking the real part of (4.50) gives

Kabcp
btc + σKabcm

btc + sea + e k
a uk = 0 . (4.51)

We now contract the last expression with ta which gives an equation that fixes σ in terms

of ta

σ = − Kabcp
atbtc

Kabcmatbtc
. (4.52)

There remain n − 1 constraints. The first p of these fix the real parts of the complex

moduli

uk = −
(

E1
−1

) ã

k

[

eãs + Kãbcp
btc − Kãbcm

btc
Kbcdp

btctd

Kbcdmbtctd

]

, (4.53)

Later we take, −
(

E1
−1

) ã

k
eã À 1, in which case we see that the uk are positive. Putting

the solutions (4.53) back into the remaining (n − p − 1) components of (4.51), we find

(n − p − 1) constraints on the fluxes which we solve by fixing the remaining eā fluxes

(recall that one was fixed by (4.46)). Similar arguments apply when taking the imaginary

part of (4.50) which reads

m0

6
Kabct

btc − qa −
s

2
Kabcm

btc + eaσ + e k
a νk = 0 . (4.54)

The first p of these conditions fix the axions vk and the remaining (n − p) equations give

constraints on the fluxes. We solve these by fixing the fluxes qā.

We have now solved all the supersymmetry equations and can apply the tadpole

conditions to these solutions. The tadpole conditions read

mae k
a = 0 . (4.55)

−m0h0 − paea − maqa = Q0 , (4.56)

−pae k
a = Qk , (4.57)

The p constraints (4.55) are solved by fixing mã. We now set pā = 0 which means that

the p conditions of (4.57) can be solved by taking

pã = −
(

E1
−1

)ã

k
Qk . (4.58)

We are left with the single tadpole equation (4.56). This tadpole fixes the overall scale

factor α, that is, the overall scale of the moduli. To see this consider contracting (4.54)

with ta, and using (4.45). One finds the relation

qat
a =

m0

6
Kabct

atbtc =
s

2
Kabct

ambtc . (4.59)

Now we set qã = 0 which means that (4.59) gives

qām
ā = α2H1 , (4.60)
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where H1 is a real number that depends on Kabc, e k
a , mā and m0. Also (4.47) gives

m0h0 = α2H2 , (4.61)

where H2 is a real number which depends on Kabc, e k
a , ma and m0. Therefore using (4.56)

we can write

α2 =
−Q0 + eã

(

E1
−1

)ã

k
Qk

H2 + H1
. (4.62)

But this last formula ensures that, by taking Qk negative and −
(

E1
−1

) ã

k
eã À 1, one can

find parametrically large values for α and so for all the moduli.

4.3 Ten-dimensional uplifts and torsion classes

So far we have considered type II theories on non-geometric backgrounds with SU(3) ×
SU(3) structure and we have studied solutions of the four-dimensional truncations thereof.

However, until now we have not studied whether such backgrounds are consistent string

backgrounds or if the solutions obtained are indeed solutions of the full ten-dimensional

string/supergravity theories. In this section we precisely want to fill this gap.

A simple argument to show the consistency of our solutions with the ten-dimensional

picture is to note that the superpotential of [30], which we generalised in our paper, was

derived from the reduction of the fermionic action. Therefore, the solution to the four-

dimensional supersymmetry equations derived from such a superpotential will solve the

ten-dimensional supersymmetry variations as well.

For the case at hand this can also be seen explicitely as follows. The conditions for

N = 1 Minkowski vacua, which spelled out in [4] (see also [3]), require that the internal

manifold is a twisted generalised Calabi–Yau manifold defined by the condition

dHΠev = 0 , (4.63)

provided we are in a regime where the dilaton and the warp factor are constant over the

internal manifold.

As we argued before in the paper, for the non-geometric backgrounds we consider

one has to replace the twisted exterior derivative dH by the covariant derivative of (2.22).

Therefore, for our case the condition for N = 1 Minkowski vacua reads

DΠev = 0 . (4.64)

It is possible to see then that the above equation is equivalent to the supersymmetry

conditions corresponding to the superpotential (3.29) along the directions S and Uk. This

implies that in a supersymmetric Minkowski vacuum the moduli take values such that

the manifold is twisted (non-geometric) generalised Calabi-Yau as required by the ten-

dimensional analysis.

5. Summary

In this paper we studied compactifications of type IIA string theory on manifolds with

SU(3) × SU(3) structure in the presence of O6-planes and its mirror compactification of

type IIB on manifolds with SU(3) × SU(3) structure in the presence of O3-planes. We
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argued that generalised geometry provides us with the tools needed to treat these non-

geometric compactifications in a geometric sense. By introducing a covariant derivative for

T-dualities we were able to derive the four-dimensional superpotential. We showed that,

in the presence of non-geometric fluxes, if the number (in IIA notation) of Kähler moduli is

larger than the number of complex structure moduli, the theory contains supersymmetric

Minkowski vacua with all the moduli stabilised in a a perturbative regime. We find that

if there are no complex structure moduli then the value of the moduli in the vacuum is

capped by the orientifold charge. In the presence of complex structure moduli however

there are parametrically controlled vacua.

The possible extensions to this work are numerous, and we hope that the systematic

construction of Minkowski vacua presented in this paper will help eliminate the need to

uplift the usual anti deSitter vacua to Minkowski, and all the problems associated with

this mechanism such as fine tuning and high scale supersymmetry breaking.
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A. Full solution with two Kähler moduli

In this appendix we include for completeness the rest of the two Kähler moduli case studied

in section 4.2.2. We also include a set of flux parameters as an explicit solution. The axions

read

b1 = b2 = 0 ,

σ =
e4

e3m1

(

p2 +
Q1

(

e4
2k0 − 2e3e4k1 + e3

2k2

)

F1

)

,

ν =
−1

4e3e4F1m1

[

4e2e4F1p
2 − 4e3F1m

1q2 − e3e4

(

e4
2k1 − 2e3e4k2 + e3

2k3

)

Q0

+e2

(

4e4
3k0 − 7e3e4

2k1 + 2e3
2e4k2 + e3

3k3

)

Q1

]

. (A.1)
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v1 v2 s u m0 m1 m2 e0 e1 e2 e3 e4 p1 p2 q1 q2 h0 h1

4.6 4.6 6.1 154 4 1 1 432 94 -94 -4 4 -8 0 196 0 147 0

Table 2: Table showing values of flux parameters and moduli values for an explicit solution.

The fixed fluxes are

m2 = −m1 e3

e4
,

e1 =
e2e3

e4
,

p1 = −e4p
2 + Q1

e3
,

q1 =
1

m1

(

−Q0 +
q2m

1e3

e4
− p1e1 − p2e2 − m0h0

)

,

h0 =
3 (−e4Q0 + e2Q1)

4e4m0
,

h1 = 0 ,

e0 = − 3

4e3F1
2m0m1

[(

e4
3k0 − 4e3e4

2k1 + 4e3
2e4k2 − e3

3k3

)

(e4Q0 − e2Q1)

(

p2F1 + Q1

(

e4
2k0 − 2e3e4k1 + e3

2k2

))]

. (A.2)

An explicit example of a solution for the intersection numbers (4.36) is presented in table 2
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[13] P.G. Camara, A. Font and L.E. Ibáñez, Fluxes, moduli fixing and MSSM-like vacua in a

simple IIA orientifold, JHEP 09 (2005) 013 [hep-th/0506066].

[14] M. Grana, J. Louis and D. Waldram, Hitchin functionals in N = 2 supergravity, JHEP 01

(2006) 008 [hep-th/0505264].

[15] B.S. Acharya, F. Benini and R. Valandro, Fixing moduli in exact type-IIA flux vacua, JHEP

02 (2007) 018 [hep-th/0607223].

[16] G. Curio and A. Krause, Four-flux and warped heterotic M-theory compactifications, Nucl.

Phys. B 602 (2001) 172 [hep-th/0012152].

[17] K. Becker and K. Dasgupta, Heterotic strings with torsion, JHEP 11 (2002) 006

[hep-th/0209077].

[18] G. Curio and A. Krause, Enlarging the parameter space of heterotic M-theory flux

compactifications to phenomenological viability, Nucl. Phys. B 693 (2004) 195

[hep-th/0308202].

[19] A. Micu, E. Palti and P.M. Saffin, M-theory on seven-dimensional manifolds with SU(3)

structure, JHEP 05 (2006) 048 [hep-th/0602163].

[20] S. Gurrieri, A. Lukas and A. Micu, Heterotic on half-flat, Phys. Rev. D 70 (2004) 126009

[hep-th/0408121].

[21] A. Micu, Heterotic compactifications and nearly-Kähler manifolds, Phys. Rev. D 70 (2004)

126002 [hep-th/0409008].

[22] R. D’Auria, S. Ferrara, M. Trigiante and S. Vaula, Gauging the Heisenberg algebra of special

quaternionic manifolds, Phys. Lett. B 610 (2005) 147 [hep-th/0410290].

[23] R. D’Auria, S. Ferrara, M. Trigiante and S. Vaula, Scalar potential for the gauged Heisenberg

algebra and a non-polynomial antisymmetric tensor theory, Phys. Lett. B 610 (2005) 270

[hep-th/0412063].

[24] B. de Carlos, S. Gurrieri, A. Lukas and A. Micu, Moduli stabilisation in heterotic string

compactifications, JHEP 03 (2006) 005 [hep-th/0507173].

[25] P. Manousselis, N. Prezas and G. Zoupanos, Supersymmetric compactifications of heterotic

strings with fluxes and condensates, Nucl. Phys. B 739 (2006) 85 [hep-th/0511122].

[26] L. Anguelova and K. Zoubos, Flux superpotential in heterotic M-theory, Phys. Rev. D 74

(2006) 026005 [hep-th/0602039].
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